On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods
نویسندگان
چکیده
منابع مشابه
On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods
Krylov subspace methods often exhibit superlinear convergence. We present a general analytic model which describes this superlinear convergence, when it occurs. We take an invariant subspace approach, so that our results apply also to inexact methods, and to non-diagonalizable matrices. Thus, we provide a unified treatment of the superlinear convergence of GMRES, Conjugate Gradients, block vers...
متن کاملOn the Superlinear Convergence of Exact and Inexact Krylov Subspace Methods
We present a general analytical model which describes the superlinear convergence of Krylov subspace methods. We take an invariant subspace approach, so that our results apply also to inexact methods, and to non-diagonalizable matrices. Thus, we provide a unified treatment of the superlinear convergence of GMRES, Conjugate Gradients, block versions of these, and inexact subspace methods. Numeri...
متن کاملInexact Krylov Subspace Methods for Linear Systems
There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming approximation method is necessary to compute it with some prescribed relative precision. In this paper we investigate the effect of an approximately computed matrix-vector product on the convergence and accuracy of several Krylov subspace solvers. The obtained insi...
متن کاملon the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولConvergence analysis of Krylov subspace methods †
One of the most powerful tools for solving large and sparse systems of linear algebraic equations is a class of iterative methods called Krylov subspace methods. Their significant advantages like low memory requirements and good approximation properties make them very popular, and they are widely used in applications throughout science and engineering. The use of the Krylov subspaces in iterati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Review
سال: 2005
ISSN: 0036-1445,1095-7200
DOI: 10.1137/s0036144503424439